
Access Labs -
Access Protocol

Solana Program Security Audit

Prepared by: Halborn

Date of Engagement: May 19th, 2022 - June 29th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) MULTIPLE VULNERABILITIES IN THE CHANGE POOL MULTIPLIER

INSTRUCTION HANDLER - HIGH 14

Description 14

Code Location 14

Risk Level 15

Recommendation 15

Remediation Plan 15

3.2 (HAL-02) ACCRUING REWARDS WITHOUT BEFORE TOKENS ARE STAKED -

HIGH 16

Description 16

Code Location 16

Risk Level 19

Recommendation 19

Remediation Plan 19

3.3 (HAL-03) MISCALCULATION OF REWARDS - HIGH 20

Description 20

1

Code Location 20

Risk Level 22

Recommendation 22

Remediation Plan 22

3.4 (HAL-04) USER FUNDS LOCKED INDEFINITELY - MEDIUM 23

Description 23

Code Location 23

Risk Level 24

Recommendation 24

Remediation Plan 24

3.5 (HAL-05) IMPOSSIBLE TO CLOSE INACTIVE POOLS - MEDIUM 25

Description 25

Code Location 25

Risk Level 26

Recommendation 26

Remediation Plan 26

3.6 (HAL-06) HARDCODED AUTHORIZED BOND SELLERS ADDRESSES - LOW 27

Description 27

Code Location 27

Risk Level 28

Recommendation 28

Remediation Plan 28

3.7 (HAL-07) TRANSFER OWNERSHIP FUNCTIONALITY MISSING - LOW 29

Description 29

Code Location 29

Risk Level 30

2

Recommendation 30

Remediation Plan 30

3.8 (HAL-08) CHECKED ARITHMETIC MISSING - LOW 31

Description 31

Code Location 31

Risk Level 32

Recommendation 32

Remediation Plan 32

3.9 (HAL-09) ZERO AMOUNT CHECK MISSING - LOW 33

Description 33

Code Location 33

Risk Level 33

Recommendation 34

Remediation Plan 34

3.10 (HAL-10) VAULT MINT ADDRESS NOT SYNCED WITH CENTRAL STATE -

INFORMATIONAL 35

Description 35

Code Location 35

Risk Level 36

Recommendation 36

Remediation Plan 36

3.11 (HAL-11) SINGLE AUTHORIZED BOND SELLER - INFORMATIONAL 37

Description 37

Code Location 37

Risk Level 38

Recommendation 38

3

Remediation Plan 38

3.12 (HAL-12) POSSIBLE MISUSE OF HELPER METHODS - INFORMATIONAL 39

Description 39

Code Location 39

Risk Level 40

Recommendation 40

Remediation Plan 40

4 AUTOMATED TESTING 41

4.1 AUTOMATED ANALYSIS 42

Description 42

Results cargo-audit 42

Result cargo-geiger 43

4.2 AUTOMATED VULNERABILITY SCANNING 48

Description 48

Results 48

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 05/19/2022 Isabel Burruezo

0.2 Draft Review 06/24/2022 Gabi Urrutia

1.0 Remediation Plan 07/01/2022 Isabel Burruezo

1.1 Remediation Plan Review 07/04/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Isabel Burruezo Halborn Isabel.Burruezo@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Isabel.Burruezo@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Access Labs engaged Halborn to conduct a security audit on their programs

beginning on May 19th and ending on June 29th. The security assessment was

scoped to the programs provided in the access-protocol GitHub repository.

Commit hashes and further details can be found in the Scope section of

this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided five weeks for the engagement and assigned

a full-time security engineer to audit the security of the program.

The security engineer is a blockchain and program security expert with

advanced penetration testing, program hacking, and deep knowledge of

multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that program functions operate as intended

• Identify potential security issues with the programs

In summary, Halborn identified some security risks that were mostly

addressed by the Access Labs team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual view of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the program audit. While manual testing

is recommended to uncover flaws in logic, process, and implementation;

automated testing techniques help enhance coverage of programs and can

quickly identify items that do not follow security best practices.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Access-Labs-Inc/access-protocol

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Solana program manual code review and walkthrough to identify any

logic issue.

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger)

• Scanning dependencies for known vulnerabilities (cargo audit).

• Local cluster deployment (solana-test-validator)

• Scanning for common Solana vulnerabilities (soteria)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

8

EX
EC

UT
IV

E
OV

ER
VI

EW

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

This review was scoped to the Solana Program Audit Branch.

1. Solana program

(a) Repository: access-protocol

(b) Commit ID: d07ece55ac23bc391a5705d7b4d0d8846a8b095b

Out-of-scope: External libraries and financial related attacks.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Access-Labs-Inc/access-protocol
https://github.com/Access-Labs-Inc/access-protocol/pull/19/commits/d07ece55ac23bc391a5705d7b4d0d8846a8b095b

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 3 2 4 3

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-04)

(HAL-06)
(HAL-07)

(HAL-05)
(HAL-02)
(HAL-03)

(HAL-10)
(HAL-08)
(HAL-09)

(HAL-11)
(HAL-12)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) MULTIPLE VULNERABILITIES
IN CHANGE POOL MULTIPLIER

INSTRUCTION HANDLING
High SOLVED - 07/08/2022

(HAL-02) ACCRUING REWARDS WITHOUT
BEFORE TOKENS ARE STAKED

High SOLVED - 06/10/2022

(HAL-03) MISCALCULATION OF REWARDS High SOLVED - 06/23/2022

(HAL-04) USER FUNDS LOCKED
INDEFINITELY

Medium SOLVED - 06/04/2022

(HAL-05) IMPOSSIBLE TO CLOSE
INACTIVE POOLS

Medium SOLVED - 06/29/2022

(HAL-06) HARDCODED AUTHORIZED BOND
SELLERS ADDRESSES

Low RISK ACCEPTED

(HAL-07) TRANSFER OWNERSHIP
FUNCTIONALITY MISSING

Low SOLVED - 07/28/2022

(HAL-08) CHECKED ARITHMETIC MISSING Low
PARTIALLY SOLVED -

06/27/2022

(HAL-09) ZERO AMOUNT CHECK MISSING Informational SOLVED - 06/27/2022

(HAL-10) VAULT MINT ADDRESS NOT
SYNCED WITH CENTRAL STATE

Informational RISK ACCEPTED

(HAL-11) SINGLE AUTHORIZED BOND
SELLER

Informational FUTURE RELEASE

(HAL-12) POSSIBLE MISUSE OF HELPER
METHODS

Informational SOLVED - 06/29/2022

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) MULTIPLE
VULNERABILITIES IN THE CHANGE POOL
MULTIPLIER INSTRUCTION HANDLER -
HIGH

Description:

The staker multiplier represents the share of staking rewards that go to

stakers, while the owner multiplier represents the remaining share. Both

multipliers are used in the calculation of staker and pool rewards.

The ChangePoolMultiplier instruction allows the stake pool owner to change

the pool staker’s multiplier at any time. However, the instruction handler

checks only if the new multiplier value is not greater than 100, and a

malicious content publisher could create a pool, wait for stakers to

stake their funds and change the multiplier to zero, which would give as

a result the following situation:

• the stake pool owner will be able to claim the generated pool rewards

based on the owner’s multiplier, which is 100% in this case, as the

stake multiplier has been changed to zero.

• users will not be able to claim rewards or get their investments

back, as they can only unstake after claiming their rewards.

Code Location:

Listing 1: src/processor/change_pool_multiplier.rs (Lines 76,87)

66 pub fn process_change_pool_multiplier(

67 program_id: &Pubkey ,

68 accounts: &[AccountInfo],

69 params: Params ,

70) -> ProgramResult {

71 let accounts = Accounts :: parse(accounts , program_id)?;

72 let Params { new_multiplier } = params;

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

73

74 let mut stake_pool = StakePool :: get_checked(accounts.

ë stake_pool , Tag:: StakePool)?;

75

76 if new_multiplier > 100 {

77 msg!("The pool multiplier is a percentage and needs to be

ë smaller than 100.");

78 return Err(AccessError :: Overflow.into());

79 }

80

81 check_account_key(

82 accounts.stake_pool_owner ,

83 &Pubkey ::new(& stake_pool.header.owner),

84 AccessError :: StakeAccountOwnerMismatch ,

85)?;

86

87 stake_pool.header.stakers_part = new_multiplier;

88

89 Ok(())

Risk Level:

Likelihood - 3

Impact - 5

Recommendation:

It is recommended to add a check to verify the new multiplier is not less

than a proper and fair percentage.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

6f7ab6e918ece665bdba3c7389cee140c5527ed1: A boolean parameter,

allow_zero_rewards, has been added to be provided in the call to the

ClaimRewards instruction to allow users to decide, in case the pool

multiplier is zero, if they want to claim zero rewards and be able to

call Unstake and ExecuteUnstake instructions later.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/6f7ab6e918ece665bdba3c7389cee140c5527ed1

3.2 (HAL-02) ACCRUING REWARDS
WITHOUT BEFORE TOKENS ARE STAKED -
HIGH

Description:

The StakeAccount is created and the value of its last_claimed_time field

is set to the current account creation time.

The Stake instruction allows stakers to stake an amount of tokens.

The ClaimRewards instruction allows stakers to claim their corresponding

rewards, the value of last_claimed_time is used to calculate these rewards

for the stake account.

However, the last_claimed_time field of the stake account is not updated

by the Stake instruction, so a malicious user can create a stake account

after the stake pool creation and wait a period of time. During that

period, the Crank instruction will have been called many times so that

the user can stake an amount of tokens and claim rewards before the next

crank. Therefore, that user would get more rewards than they are eligible

for, since they will be calculated based on the time period since their

staking account was created, which does not match the time they have that

staked amount.

Code Location:

Listing 2: src/processor/claim_rewards.rs

133 let reward = calc_reward_fp32(

134 current_time ,

135 stake_account.last_claimed_time ,

136 &stake_pool ,

137 true ,

138)?

139 // Multiply by the staker shares of the total pool

140 .checked_mul(stake_account.stake_amount as u128)

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

141 .map(|r| r >> 32)

142 .and_then(safe_downcast)

143 .ok_or(AccessError :: Overflow)?;

Listing 3: src/processor/stake.rs

151 assert_valid_fee(accounts.fee_account , ¢ral_state.

ë authority)?;

152 let fees = (amount * FEES) / 100;

153 amount -= fees;

154

155 if stake_account.stake_amount > 0

156 && stake_account.last_claimed_time < stake_pool.header.

ë last_crank_time

157 {

158 return Err(AccessError :: UnclaimedRewards.into());

159 }

160 // Transfer tokens

161 let transfer_instruction = transfer(

162 &spl_token ::ID ,

163 accounts.source_token.key ,

164 accounts.vault.key ,

165 accounts.owner.key ,

166 &[],

167 amount ,

168)?;

169 invoke(

170 &transfer_instruction ,

171 &[

172 accounts.spl_token_program.clone (),

173 accounts.source_token.clone (),

174 accounts.vault.clone (),

175 accounts.owner.clone (),

176],

177)?;

178

179 // Transfer fees

180 let transfer_fees = transfer(

181 &spl_token ::ID ,

182 accounts.source_token.key ,

183 accounts.fee_account.key ,

184 accounts.owner.key ,

185 &[],

186 fees ,

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

187)?;

188 invoke(

189 &transfer_fees ,

190 &[

191 accounts.spl_token_program.clone (),

192 accounts.source_token.clone (),

193 accounts.fee_account.clone (),

194 accounts.owner.clone (),

195],

196)?;

197

198 if stake_account

199 .stake_amount

200 .checked_add(amount)

201 .ok_or(AccessError :: Overflow)?

202 < std::cmp::min(

203 stake_account.pool_minimum_at_creation ,

204 stake_pool.header.minimum_stake_amount ,

205)

206 {

207 msg!(

208 "The minimum stake amount must be > {}",

209 stake_account.pool_minimum_at_creation

210);

211 return Err(ProgramError :: InvalidArgument);

212 }

213

214 // Update stake account

215 stake_account.deposit(amount)?;

216 stake_pool.header.deposit(amount)?;

217

218 // Update central state

219 central_state.total_staked = central_state

220 .total_staked

221 .checked_add(amount)

222 .ok_or(AccessError :: Overflow)?;

223

224 // Save states

225 stake_account.save(&mut accounts.stake_account.data.borrow_mut

ë ());

226 central_state.save(&mut accounts.central_state_account.data.

ë borrow_mut ());

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 5

Impact - 3

Recommendation:

It is recommended to update the last_claimed_time of the stake account

when its owner is staking and its stake_amount was zero before.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

307fa9fd5618d3063aea012eee2881972dcc006f: Added a check in staker

instruction handler to verify if the account’s stake amount so far is

zero and if it is, its last_claimed_time value is updated.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/307fa9fd5618d3063aea012eee2881972dcc006f

3.3 (HAL-03) MISCALCULATION OF
REWARDS - HIGH

Description:

Stakers can claim their rewards by sending the ClaimRewards instruction

daily after the crank, or claim the total amount in one go later.

However, stakers who claim rewards daily get a higher total amount since

the reward calculation loop always performed an extra iteration in that

case. For example, if a staker claims daily for 7 days, the amount of

rewards they will have earned on day 7 will be greater than the amount

collected by the staker who claims them all at once on day 7.

Code Location:

Listing 4: src/processor/claim_rewards.rs (Line 133)

133 let reward = calc_reward_fp32(

134 current_time ,

135 stake_account.last_claimed_time ,

136 &stake_pool ,

137 true ,

138)?

139 // Multiply by the staker shares of the total pool

140 .checked_mul(stake_account.stake_amount as u128)

141 .map(|r| r >> 32)

142 .and_then(safe_downcast)

143 .ok_or(AccessError :: Overflow)?;

Listing 5: src/utils.rs (Lines 35,40)

14 pub fn calc_reward_fp32(

15 current_time: i64 ,

16 last_claimed_time: i64 ,

17 stake_pool: &StakePoolRef ,

18 staker: bool ,

19) -> Result <u128 , ProgramError > {

20 let mut nb_days_to_claim =

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

21 current_time.saturating_sub(last_claimed_time) as u64 /

ë SECONDS_IN_DAY;

22 msg!("Nb of days behind {}", nb_days_to_claim);

23 nb_days_to_claim = std::cmp::min(nb_days_to_claim ,

ë STAKE_BUFFER_LEN - 1);

24

25 if current_time

26 .checked_sub(stake_pool.header.last_crank_time)

27 .ok_or(AccessError :: Overflow)?

28 > SECONDS_IN_DAY as i64

29 {

30 #[cfg(not(feature = "no -lock -time"))]

31 return Err(AccessError :: PoolMustBeCranked.into());

32 }

33

34 // Saturating as we don 't want to wrap around when there haven

ë 't been sufficient cranks

35 let mut i = (stake_pool.header.current_day_idx as u64).

ë saturating_sub(nb_days_to_claim)

36 % STAKE_BUFFER_LEN;

37

38 // Compute reward for all past days

39 let mut reward: u128 = 0;

40 while i != (stake_pool.header.current_day_idx as u64 + 1) %

ë STAKE_BUFFER_LEN {

41 let curr_day_reward = if staker {

42 stake_pool.balances[i as usize]. stakers_reward

43 } else {

44 stake_pool.balances[i as usize]. pool_reward

45 };

46 reward = reward

47 .checked_add(curr_day_reward)

48 .ok_or(AccessError :: Overflow)?;

49 i = (i + 1) % STAKE_BUFFER_LEN;

50 }

51

52 if reward == 0 {

53 msg!("No rewards to claim , no operation.");

54 return Err(AccessError ::NoOp.into());

55 }

56

57 Ok(reward)

58

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 5

Impact - 3

Recommendation:

It is recommended to update the initial index in the reward calculation

loop to eliminate the extra iteration.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

149ad1baf1d2033700d07f3c22515bc9df0ed27b: The initial index in

the rewards’ calculation loop has been updated to start in the proper

one.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/149ad1baf1d2033700d07f3c22515bc9df0ed27b

3.4 (HAL-04) USER FUNDS LOCKED
INDEFINITELY - MEDIUM

Description:

The CloseStakePool instruction allows the stake pool owner to close the

pool account at any time, as long as the pool is active and the value of

stake_pool.header.total_stake is zero.

However, the stake pool vault balance is not checked to be zero, so

the stake pool can be closed even if there are users who initialized

the unstake operation with the Unstake instruction but have not executed

the unstake with the ExecuteUnstake instruction yet, in which case those

users will not be able to recover their investment.

Code Location:

Listing 6: src/processor/close_stake_pool.rs (Line 79)

64 pub fn process_close_stake_pool(

65 program_id: &Pubkey ,

66 accounts: &[AccountInfo],

67 _params: Params ,

68) -> ProgramResult {

69 let accounts = Accounts :: parse(accounts , program_id)?;

70

71 let mut stake_pool = StakePool :: get_checked(accounts.

ë stake_pool_account , Tag:: StakePool)?;

72

73 check_account_key(

74 accounts.owner ,

75 &Pubkey ::new(& stake_pool.header.owner),

76 AccessError :: WrongStakePoolOwner ,

77)?;

78

79 assert_empty_stake_pool (& stake_pool)?;

80

81 stake_pool.header.close ();

82

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

83 let mut stake_pool_lamports = accounts.stake_pool_account.

ë lamports.borrow_mut ();

84 let mut owner_lamports = accounts.owner.lamports.borrow_mut ();

85

86 ** owner_lamports += ** stake_pool_lamports;

87 ** stake_pool_lamports = 0;

Listing 7: src/utils.rs (Line 88)

87 pub fn assert_empty_stake_pool(stake_pool: &StakePoolRef) ->

ë ProgramResult {

88 if stake_pool.header.total_staked != 0 {

89 msg!("The stake pool must be empty");

90 return Err(AccessError :: StakePoolMustBeEmpty.into());

91 }

92 Ok(())

93 }

Risk Level:

Likelihood - 2

Impact - 4

Recommendation:

It is recommended to add a check in the process_close_stake_pool function

to verify the vault balance is zero before closing the pool account.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

8f71aee18b57e16f9d24e8fc163f6fe822cd607c: Added a check in the

close_stake_pool instruction handler to verify that the vault is empty,

and if it is not, it does not allow its owner to close it.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/8f71aee18b57e16f9d24e8fc163f6fe822cd607c

3.5 (HAL-05) IMPOSSIBLE TO CLOSE
INACTIVE POOLS - MEDIUM

Description:

The CloseStakePool instruction allows the stake pool owner to close an

active stake pool if the total amount staked is zero. If a stake pool is

misconfigured, it cannot be closed until activated by the central state

authority.

However, a user could stake in an activated misconfigured pool before the

owner manages to close it, which means that the owner would need to wait

for the whole process of staking, claiming and unstaking to finish.

Code Location:

Listing 8: src/processor/close_stake_pool.rs (Line 71)

64 pub fn process_close_stake_pool(

65 program_id: &Pubkey ,

66 accounts: &[AccountInfo],

67 _params: Params ,

68) -> ProgramResult {

69 let accounts = Accounts :: parse(accounts , program_id)?;

70

71 let mut stake_pool = StakePool :: get_checked(accounts.

ë stake_pool_account , Tag:: StakePool)?;

72

73 check_account_key(

74 accounts.owner ,

75 &Pubkey ::new(& stake_pool.header.owner),

76 AccessError :: WrongStakePoolOwner ,

77)?;

78

79

80 assert_empty_stake_pool (& stake_pool)?;

81

82 stake_pool.header.close ();

83

84 let mut stake_pool_lamports = accounts.stake_pool_account.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

ë lamports.borrow_mut ();

85

86 let mut owner_lamports = accounts.owner.lamports.borrow_mut ();

87

88 ** owner_lamports += ** stake_pool_lamports;

89 ** stake_pool_lamports = 0;

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Implement a feature to allow the pool owner to close misconfigured inactive

pools.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

2a03cfd2bc8f1121391ed78b692d7eb2deca3ca8: A vector of tags for

stake pool status checking has been added. In the CloseStakePool

instruction handler, the check has also been modified to allow the stake

pool to be closed if it is also inactive.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/2a03cfd2bc8f1121391ed78b692d7eb2deca3ca8

3.6 (HAL-06) HARDCODED AUTHORIZED
BOND SELLERS ADDRESSES - LOW

Description:

The create_bond instruction handler checks the signer’s account address

is in the hardcoded AUTHORIZED_BOND_SELLERS array at the user-supplied

index.

The AUTHORISED_BOND_SELLERS array contains account addresses of autho-

rized bond sellers who create and sign bonds.

The addresses in the AUTHORISED_BOND_SELLERS array cannot be changed

without redeploying the program if any of those accounts is compromised.

Code Location:

Listing 9: src/processor/create_bond.rs (Line 117)

97 pub fn process_create_bond(

98 program_id: &Pubkey ,

99 accounts: &[AccountInfo],

100 params: Params ,

101) -> ProgramResult {

102 let accounts = Accounts :: parse(accounts , program_id)?;

103

104 let (derived_key , nonce) =

105 BondAccount :: create_key (& params.buyer , params.

ë total_amount_sold , program_id);

106

107 let stake_pool = StakePool :: get_checked(accounts.stake_pool ,

ë Tag:: StakePool)?;

108

109 check_account_key(

110 accounts.bond_account ,

111 &derived_key ,

112 AccessError :: AccountNotDeterministic ,

113)?;

114 assert_uninitialized(accounts.bond_account)?;

115

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

116 #[cfg(not(feature = "no-bond -signer "))]

117 assert_authorized_seller(accounts.seller , params.seller_index

ë as usize)?;

Listing 10: src/utils.rs (Line 137)

136 pub fn assert_authorized_seller(seller: &AccountInfo , seller_index

ë : usize) -> ProgramResult {

137 let expected_seller = AUTHORIZED_BOND_SELLERS

138 .get(seller_index)

139 .ok_or(AccessError :: UnauthorizedSeller)?;

140 if seller.key != expected_seller {

141 return Err(AccessError :: UnauthorizedSeller.into());

142 }

143 Ok(())

Listing 11: src/state.rs

503 /// List of authorized bond sellers

504 pub const AUTHORIZED_BOND_SELLERS: [Pubkey; 1] = [solana_program ::

ë pubkey!(

505 "3Nrq6mCNL5i8Qk4APhggbwXismcsF23gNVDEaKycZBL8"

506)];

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Implement a governance function to update the contents of the

AUTHORIZED_BOND_SELLERS array.

Remediation Plan:

RISK ACCEPTED: The Access Labs team accepted the risk of this finding.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) TRANSFER OWNERSHIP
FUNCTIONALITY MISSING - LOW

Description:

The program lacks the option to update the central state authority ad-

dress. If the authority account is compromised, or if the development

team needs to change the address for operational reasons, a significant

portion of the contract’s functionality will become unusable.

Code Location:

Listing 12: src/processor/create_central_state.rs

73 pub fn process_create_central_state(

74 program_id: &Pubkey ,

75 accounts: &[AccountInfo],

76 params: Params ,

77) -> ProgramResult {

78 let accounts = Accounts :: parse(accounts)?;

79 let (derived_state_key , nonce) = CentralState :: find_key(

ë program_id);

80

81 check_account_key(

82 accounts.state_account ,

83 &derived_state_key ,

84 AccessError :: AccountNotDeterministic ,

85)?;

86

87 let state = CentralState ::new(

88 nonce ,

89 params.daily_inflation ,

90 *accounts.mint.key ,

91 params.authority ,

92 0,

93);

94

95 Cpi:: create_account(

96 program_id ,

97 accounts.system_program ,

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

98 accounts.fee_payer ,

99 accounts.state_account ,

100 &[& program_id.to_bytes (), &[nonce]],

101 state.borsh_len (),

102)?;

103

104 state.save(&mut accounts.state_account.data.borrow_mut ());

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

It is recommended to add authority transfer capabilities to the program,

split into two different functions: set_authority and accept_authority.

The latter function allows the transfer to be completed by the recipient,

which protects the program against possible typing errors compared to

one-step authority change features.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

db411744cb8c2514b7837c90db0af8bf5b05ba67: The change_central_state_authority

instruction has been added to include the capability to the program to

transfer the ownership of the central state.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/db411744cb8c2514b7837c90db0af8bf5b05ba67

3.8 (HAL-08) CHECKED ARITHMETIC
MISSING - LOW

Description:

Unsafe arithmetic operations were identified in multiple files and program

functions.

Code Location:

Listing 13: src/state.rs (Line 651)

649 pub fn calc_unlock_amount (&self , missed_periods: u64) -> Result <

ë u64 , ProgramError > {

650 msg!("Missed periods {}", missed_periods);

651 let cumulated_unlock_amnt = missed_periods * self.

ë unlock_amount;

652 msg!(

653 "Unlock amount {} Total amount {}",

654 cumulated_unlock_amnt ,

655 self.total_amount_sold

656);

Listing 14: src/processor/close_stake_account.rs (Lines 76,77)

73 let mut stake_lamports = accounts.stake_account.lamports.

ë borrow_mut ();

74 let mut owner_lamports = accounts.owner.lamports.borrow_mut ();

75

76 ** owner_lamports += ** stake_lamports;

77 ** stake_lamports = 0;

Listing 15: src/processor/close_stake_pool.rs (Lines 85,86)

80 stake_pool.header.close ();

81

82 let mut stake_pool_lamports = accounts.stake_pool_account.

ë lamports.borrow_mut ();

83 let mut owner_lamports = accounts.owner.lamports.borrow_mut ();

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

84

85 ** owner_lamports += ** stake_pool_lamports;

86 ** stake_pool_lamports = 0;

Listing 16: src/processor/stake.rs (Lines 153,154)

151 assert_valid_fee(accounts.fee_account , ¢ral_state.

ë authority)?;

152

153 let fees = (amount * FEES) / 100;

154 amount -= fees;

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

Consider using checked arithmetic operations instead of regular arithmetic

operators to handle this gracefully.

Remediation Plan:

PARTIALLY SOLVED: The Access Labs team fixed partially this issue in

commit 6f0cbf6ee9de741c67ff053ae41176febad99265: Regular arithmetic op-

erators in state has been changed for using checked arithmetic operations.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/6f0cbf6ee9de741c67ff053ae41176febad99265

3.9 (HAL-09) ZERO AMOUNT CHECK
MISSING - LOW

Description:

The Stake instruction handler allows users to stake ACCESS in pools.

The instruction handler checks whether the total amount staked by this

account so far account is above the threshold.

However, because when the threshold is reached the function does not

validate the user-supplied amount to be greater than 0, users can execute

this instruction successfully without actually staking ACCESS.

Code Location:

Listing 17: /src/processor/stake.rs

205 if stake_account

206 .stake_amount

207 .checked_add(amount)

208 .ok_or(AccessError :: Overflow)?

209 < std::cmp::min(

210 stake_account.pool_minimum_at_creation ,

211 stake_pool.header.minimum_stake_amount ,

212)

213 {

214 msg!(

215 "The minimum stake amount must be > {}",

216 stake_account.pool_minimum_at_creation

217);

218 return Err(ProgramError :: InvalidArgument);

219 }

Risk Level:

Likelihood - 2

Impact - 2

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

It is recommended to add a check to verify the amount provided to stake

is greater than zero.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

6f0cbf6ee9de741c67ff053ae41176febad99265: A check has been added

in stake instruction handler to prevent staking of an amount equal to

zero.

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/6f0cbf6ee9de741c67ff053ae41176febad99265

3.10 (HAL-10) VAULT MINT ADDRESS
NOT SYNCED WITH CENTRAL STATE -
INFORMATIONAL

Description:

The CreateStakePool instruction allows the content publisher to create

a betting pool by providing a number of accounts, including the token

vault. Its parameters are verified by the instruction handler. However,

its mint is checked to match the encoded ACCESS_MINT address and not the

central state mint, which is the actual token mint used in transfers.

Code Location:

Listing 18: /src/processor/create_stake_pool.rs (Line 94)

79 pub fn process_create_stake_pool(

80 program_id: &Pubkey ,

81 accounts: &[AccountInfo],

82 params: Params ,

83) -> ProgramResult {

84 let accounts = Accounts :: parse(accounts)?;

85

86 let (derived_stake_key , nonce) = StakePool :: find_key (& params.

ë owner , program_id);

87

88 check_account_key(

89 accounts.stake_pool_account ,

90 &derived_stake_key ,

91 AccessError :: AccountNotDeterministic ,

92)?;

93

94 assert_valid_vault(accounts.vault , &derived_stake_key)?;

Listing 19: /src/utils.rs (Line 113)

103 pub fn assert_valid_vault(account: &AccountInfo , vault_signer: &

ë Pubkey) -> ProgramResult {

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

104 let acc = Account :: unpack (& account.data.borrow ())?;

105 if &acc.owner != vault_signer {

106 msg!("The vault account should be owned by the stake pool

ë signer");

107 return Err(ProgramError :: InvalidArgument);

108 }

109 if acc.close_authority.is_some () || acc.delegate.is_some () {

110 msg!("Invalid vault account provided");

111 return Err(ProgramError :: InvalidArgument);

112 }

113 if acc.mint != ACCESS_MINT {

114 msg!("Invalid ACCESS mint");

115 #[cfg(not(feature = "no -mint -check "))]

116 return Err(ProgramError :: InvalidArgument);

117 }

118 Ok(())

Risk Level:

Likelihood - 1

Impact - 2

Recommendation:

It is recommended to check if the mint of the vault matches the mint of

the central state.

Remediation Plan:

RISK ACCEPTED: The Access Labs team accepted the risk of this finding.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-11) SINGLE AUTHORIZED
BOND SELLER - INFORMATIONAL

Description:

A bond can be created by a single authorized seller, but in order to

actually sell it, all authorized sellers must sign the SignBond instruc-

tion.

However, in the current implementation only one authorized seller exists,

so when a bond is created, a single signature is sufficient to authorize

its sale, centralising the operation.

Code Location:

Listing 20: src/state.rs

500 /// Number of sellers who need to agree for a bond to be sold

501 pub const BOND_SIGNER_THRESHOLD: u64 = 1;

502

503 /// List of authorized bond sellers

504 pub const AUTHORIZED_BOND_SELLERS: [Pubkey; 1] = [solana_program ::

ë pubkey!(

505 "3Nrq6mCNL5i8Qk4APhggbwXismcsF23gNVDEaKycZBL8"

506)];

Listing 21: src/processor/sign_bond.rs

54 pub fn process_sign_bond(

55 program_id: &Pubkey ,

56 accounts: &[AccountInfo],

57 params: Params ,

58) -> ProgramResult {

59 let accounts = Accounts :: parse(accounts , program_id)?;

60 let mut bond = BondAccount :: from_account_info(accounts.

ë bond_account , true)?;

61 assert_authorized_seller(accounts.seller , params.seller_index

ë as usize)?;

62

63 if bond.sellers.len() == BOND_SIGNER_THRESHOLD as usize {

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

64 msg!("There are enough signers already");

65 return Err(AccessError ::NoOp.into());

66 }

67

68 #[cfg(not(feature = "no-bond -signer "))]

69 for current_seller in &bond.sellers {

70 if accounts.seller.key == current_seller {

71 msg!("The seller has already signed");

72 return Err(AccessError :: BondSellerAlreadySigner.into()

ë);

73 }

74 }

75

76 bond.sellers.push(* accounts.seller.key);

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to authorize multiple sellers so that sales have to be

approved by multiple parties.

Remediation Plan:

PENDING: The Access Labs team will fix this issue be following the rec-

ommendation in a future version of the code when the program is deployed.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.12 (HAL-12) POSSIBLE MISUSE OF
HELPER METHODS - INFORMATIONAL

Description:

The intention and use of helper methods in Rust, like unwrap, is very

useful for testing environments because a value is forcibly demanded to

get an error (aka panic!) if the Option the methods is called on doesn’t

have Some value or Result. Nevertheless, leaving unwrap functions in

production environments is a bad practice because not only will this

cause the program to crash out, or panic!. In addition, no helpful

messages are shown to help the user solve, or understand the reason of

the error.

Code Location:

Note: some usages of unwrap are justified and were excluded from the

listing below.

Listing 22

1 src/processor/claim_rewards.rs :111: let current_time = Clock ::

ë get().unwrap ().unix_timestamp;

2 src/processor/claim_pool_rewards.rs :101: let current_time =

ë Clock ::get().unwrap ().unix_timestamp;

3 src/processor/claim_bond_rewards.rs :113: let current_time =

ë Clock ::get().unwrap ().unix_timestamp;

4 src/state.rs :162: try_cast_slice_mut(rem).unwrap (),

5 src/state.rs :219: .checked_add(nb_days_passed.try_into

ë ().unwrap ())

6 src/state.rs :231: Pubkey :: create_program_address(seeds ,

ë program_id).unwrap ()

7 src/state.rs :253: last_crank_time: Clock ::get().unwrap

ë ().unix_timestamp ,

8 src/state.rs :254: last_claimed_time: Clock ::get().

ë unwrap ().unix_timestamp ,

9 src/state.rs :269: self.total_staked = self.total_staked.

ë checked_add(amount).unwrap ();

39

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

10 src/state.rs :274: self.total_staked = self.total_staked.

ë checked_sub(amount).unwrap ();

11 src/state.rs :359: Pubkey :: create_program_address(seeds ,

ë program_id).unwrap ()

12 src/state.rs :372: self.serialize (&mut dst).unwrap ()

13 src/state.rs :389: self.stake_amount = self.stake_amount.

ë checked_add(amount).unwrap ();

14 src/state.rs :395: self.stake_amount = self.stake_amount.

ë checked_sub(amount).unwrap ();

15 src/state.rs :478: Pubkey :: create_program_address(

ë signer_seeds , program_id).unwrap ()

16 src/state.rs :486: self.serialize (&mut dst).unwrap ()

17 src/state.rs :619: self.serialize (&mut dst).unwrap ()

18

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended not use the unwrap function in production environment

because this use provokes panic! and may crash the contract without

verbose error messages. Crashing the system will result in a loss of

availability, and in some cases, even private information stored in the

state. Some alternatives are possible, such as propagating the error

with ? instead of unwrap or using the error-chain crate for errors.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

8b0e0d49c3bbf72f3e101427116873d40671eb25: The use of unwrap function

has been replaced by propagating the error with ?.

40

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/8b0e0d49c3bbf72f3e101427116873d40671eb25

41

AUTOMATED TESTING

4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of well-

known security issues and vulnerabilities. Among the tools used was cargo

-audit, a security scanner for vulnerabilities reported to the RustSec

Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Only security detections are in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the

auditors are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results cargo-audit:

ID package Short Description

RUSTSEC-2022-0013 regex Regexes with large repetitions on empty sub-

expressions take a very long time to parse

42

AU
TO

MA
TE

D
TE

ST
IN

G

https://groups.google.com/g/rustlang-security-announcements/c/NcNNL1Jq7Yw

Result cargo-geiger:

43

AU
TO

MA
TE

D
TE

ST
IN

G

44

AU
TO

MA
TE

D
TE

ST
IN

G

45

AU
TO

MA
TE

D
TE

ST
IN

G

46

AU
TO

MA
TE

D
TE

ST
IN

G

47

AU
TO

MA
TE

D
TE

ST
IN

G

4.2 AUTOMATED VULNERABILITY
SCANNING

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was Soteria, a security

analysis service for Solana programs. Soteria performed a scan on all

the programs and sent the compiled results to the analyzers to locate any

vulnerabilities.

Results:

Soteria scanner found four unsafe arithmetic operations that were reported

with HAL-06 vulnerability in previous chapter.

48

AU
TO

MA
TE

D
TE

ST
IN

G

49

AU
TO

MA
TE

D
TE

ST
IN

G

50

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results cargo-audit
	Result cargo-geiger

	AUTOMATED VULNERABILITY SCANNING
	Description
	Results

