
Access Protocol -
Cairo contracts

Cairo Smart Contract Security
Audit

Prepared by: Halborn

Date of Engagement: July 25th, 2022 - August 22nd, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) STAKE POOL OWNER CAN CHANGE THE REWARDS EARNED - MEDIUM

14

Description 14

Proof of Concept 14

Risk Level 15

Recommendation 15

Remediation Plan 16

3.2 (HAL-02) OVER PRIVILEGED AUTHORITY ROLE - MEDIUM 17

Description 17

Risk Level 17

Recommendation 17

Remediation Plan 17

3.3 (HAL-03) MISSING MECHANISM FOR FORCED EXIT ON FROZEN POOL - LOW

18

Description 18

1

Code Location 18

Risk Level 18

Recommendation 18

Remediation Plan 19

3.4 (HAL-04) INSUFFICIENT PARAMETER VALIDATION - LOW 20

Description 20

Code Location 20

Risk Level 20

Recommendation 20

Remediation Plan 20

3.5 (HAL-05) MISSING TWO-STEP TRANSFER OWNERSHIP PATTERN - LOW 21

Description 21

Risk Level 21

Recommendation 21

Remediation Plan 22

3.6 (HAL-06) OUTDATED OPENZEPPELIN’S CONTRACTS VERSION - INFORMA-

TIONAL 23

Description 23

Risk Level 23

Recommendation 23

Remediation Plan 23

3.7 (HAL-07) CONTRACTS WITH THE SAME NAME WILL HAVE OVERWRITTEN

ABIS - INFORMATIONAL 24

Description 24

Risk Level 24

Recommendation 24

Remediation Plan 24

2

3.8 (HAL-08) UNCLEAR VARIABLE NAMING - INFORMATIONAL 25

Description 25

Code Location 25

Risk Level 25

Recommendation 25

Remediation Plan 25

3.9 (HAL-09) CODE COMMENTS INCONSISTENCIES - INFORMATIONAL 26

Description 26

Code Location 26

Recommendation 26

Remediation Plan 26

3.10 (HAL-10) WRONG ARRAY DECLARATION FOR FUNCTION PARAMETERS - IN-

FORMATIONAL 27

Description 27

Code Location 27

Risk Level 27

Recommendation 27

Remediation Plan 28

3.11 (HAL-11) UNUSED VARIABLE - INFORMATIONAL 29

Description 29

Code Location 29

Risk Level 29

Recommendation 29

Remediation Plan 29

3.12 Appendix I 30

Bond Sellers Considerations 30

3

4 STATIC ANALYSIS 31

Description 33

Amarna results 33

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/08/2022 Gokberk Gulgun

0.2 Document Edits 08/15/2022 Gokberk Gulgun

1.0 Remediation Plan 08/29/2022 Gokberk Gulgun

1.1 Remediation Plan Review 08/29/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Gokberk Gulgun Halborn Gokberk.Gulgun@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Gokberk.Gulgun@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Access Protocol engaged Halborn to conduct a security audit on their smart

contracts beginning on July 25th, 2022 and ending on August 22nd, 2022

. The security assessment was scoped to the smart contracts provided to

the Halborn team.

Access Protocol is a protocol that allows content creators to earn rewards

whenever a user wants to access their content. Each content creator would

create a stake pool, and based on how much ACCESS tokens are staked in

their pool, they would get a percentage of the reward issued from the

protocol daily inflation. Users, who wants to access the content, must

first deposit a stake in the pool. Users are also rewarded a portion of

the daily inflation.

1.2 AUDIT SUMMARY

The team at Halborn was provided six weeks for the engagement and assigned

two full-time security engineers to audit the security of the smart con-

tract. The security engineer is a blockchain and smart-contract security

expert with advanced penetration testing, smart-contract hacking, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended.

• Identify potential security issues with the smart contracts.

In summary, Halborn identified several security risks which were mostly

addressed by the Access Protocol team.

Halborn identified that malicious content creators could trick the users

to stake tokens in their pool for a certain reward percentage (called

stakers_part), however, as rewards are calculated daily, the pool owners

would be able to change this parameter to be a more favorable value (up to

7

EX
EC

UT
IV

E
OV

ER
VI

EW

1% for stakers and 99% for pool owners). This change could be performed

just before the day end (calculated using the block.timestamp), and then,

after the new day start, the pool owner could get 99% of the reward for

themselves.

• Malicious usage.

• Access control (the platform is centralized, and it might require

adding additional user roles).

• Lack of documentation and inconsistencies in code/comments.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy regarding

the scope of this audit. While manual testing is recommended to uncover

flaws in logic, process, and implementation, automated testing techniques

help enhance coverage of the protocol code and can quickly identify items

that do not follow security best practices. The following phases and

associated tools were used throughout the term of the audit:

• Research into architecture and purpose.

• Smart contract manual code review and walkthrough.

• Graphing out functionality and contract logic/connectivity/func-

tions.

• Manual assessment of use and safety for the critical Cairo vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Manual testing using custom scripts.

• Testnet deployment (starknet-devnet).

• Dynamic testing with Protostar and Nile and custom Python scripts.

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

8

EX
EC

UT
IV

E
OV

ER
VI

EW

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

The contracts that were audited can be found in the following repository:

Access Protocol Cairo contracts.

The commit ID provided for the assessment was:

• 927e9a072c8e11485ebec19ed96b0139c4ba0fb1

Commit IDs for new changes were :

• PR 75

• PR 76

• PR 77

Please note that the OpenZeppelin’s contracts, which are in use by the

project, were not within scope for this assessment. Furthermore, these

have not been audited and should be used with care.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/software-mansion-labs/access-protocol-starknet/tree/master/contract/src
https://github.com/software-mansion-labs/access-protocol-starknet/pull/75
https://github.com/software-mansion-labs/access-protocol-starknet/pull/76
https://github.com/software-mansion-labs/access-protocol-starknet/pull/77

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 2 3 6

IM
PA
CT

LIKELIHOOD

(HAL-03)

(HAL-01)
(HAL-02)

(HAL-05) (HAL-04)

(HAL-06)
(HAL-07)
(HAL-08)
(HAL-09)
(HAL-10)
(HAL-11)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL-01 - STAKE POOL OWNER CAN
CHANGE THE REWARDS EARNED

Medium SOLVED - 08/29/2022

HAL-02 - OVER PRIVILEGED AUTHORITY
ROLE

Medium RISK ACCEPTED

HAL-03 - MISSING MECHANISM FOR
FORCED EXIT ON FROZEN POOL

Low
NOT APPLICABLE -

08/29/2022

HAL-04 - INSUFFICIENT PARAMETER
VALIDATION

Low RISK ACCEPTED

HAL-05 - MISSING TWO-STEP TRANSFER
OWNERSHIP PATTERN

Low RISK ACCEPTED

HAL-06 - OUTDATED OPENZEPPELIN’S
CONTRACTS VERSION

Informational SOLVED - 08/29/2022

HAL-07 - CONTRACTS WITH THE SAME
NAME WILL HAVE OVERWRITTEN ABIS

Informational ACKNOWLEDGED

HAL-08 - UNCLEAR VARIABLE NAMING Informational SOLVED - 08/29/2022

HAL-09 - CODE COMMENTS
INCONSISTENCIES

Informational SOLVED - 08/29/2022

HAL-10 - WRONG ARRAY DECLARATION
FOR FUNCTION PARAMETERS

Informational SOLVED - 08/29/2022

HAL-11 - UNUSED VARIABLE Informational SOLVED - 08/29/2022

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) STAKE POOL OWNER CAN
CHANGE THE REWARDS EARNED - MEDIUM

Description:

The owner of a pool stake can change the stakers_part parameter, which is

the percentage of the pool reward goes to staking users compared to the

pool owner. The only validation on staker_part is done with the following

function:

Listing 1

1 func assert_valid_stakers_part{range_check_ptr }(stakers_part: felt

ë) -> ():

2 with_attr error_message (" stakers_part must be in [0, 100]

ë range "):

3 assert_nn_le(stakers_part , 100)

4 end

5 return ()

6 end

The above function only validates that the staker’s share is between 0

and 100, so it can be set to as little as 1%. Due to how the funds are

locked in the pool, requiring users to not be able to unstake until a day

has passed, a malicious pool owner could take the following steps:

1. Create a legitimate stake pool.

2. Get pool approval from AccessProtocol.

3. Wait for users to deposit their stake.

4. At the end of the day, when the rewards are available, change the

stakers part to be just 1%.

5. Withdraw rewards from the pool.

Proof of Concept:

1. call create_stake_pool.

2. The administrator would approve the pool.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3. The creator of the malicious pool waits for users to stake tokens.

4. The malicious pool owner changes the staker part to be 1%.

5. One day, passes when rewards can be claimed.

6. The owner of the malicious pool withdraws his reward percentage.

Users can now identify the issue and report it to Access Protocol, at

which point they can freeze the pool so that the owner cannot claim

further interest. However, this would result in the staked funds being

locked in the pool (as described in the next issue). If Access Protocol

were to attempt to compensate stakeholders, they could mint an arbitrary

amount of tokens, however the total supply of the token would increase,

affecting all holders.

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Halborn recommends reviewing the staking functionality as well as the

pool administration process. The first step of the actions would be

to limit the number of times the stakers_part can be changed within a

certain period of time, for instance once a day would be sufficient and

would not require a large number of code changes. Furthermore, users

should be aware of this potential risk in the interface, to prevent them

from locking their tokens in a “malicious” pool. An additional safeguard

mechanism for users would be to allow their funds to unstake in case the

owner of the pool changes the stakers_part beyond a certain threshold.

This can be achieved by storing the stakers_part variable at the stake

time and implementing an unstake function that checks if the contract’s

current stakers_part has changed by more than a pre-set value.

Another possible solution to protect users could involve creating two

types of pool, one that allows the owner of the pool to change the

stakers_parts, and one that is fixed. The pool that allows the reward

percentage to be modified should implement the mitigation described above,

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

while the fixed pool should be set with the reward set to a value that

the Access Protocol team deems appropriate.

Remediation Plan:

SOLVED: The Access Protocol team implemented changes in the following PR

75 and PR 76.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/software-mansion-labs/access-protocol-starknet/pull/75
https://github.com/software-mansion-labs/access-protocol-starknet/pull/75
https://github.com/software-mansion-labs/access-protocol-starknet/pull/76

3.2 (HAL-02) OVER PRIVILEGED
AUTHORITY ROLE - MEDIUM

Description:

The protocol authority role has many privileges on the system. For

instance, they can mint new tokens, freeze and unfreeze accounts, approve

or disable staking pools, change token emission parameters.

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

Halborn recommends that the protocol be reviewed to ensure that a role-

based access control system is implemented, to reduce the damage an

attacker could cause with authority account access. At a minimum, the

Access Protocol team should ensure that the role with the highest priv-

ilege uses a multi-signature account, or if this is not possible (for

instance, the backend system needs to submit transactions on their be-

half), it should be considered separating user roles, be more granular.

Remediation Plan:

RISK ACCEPTED: The Access Protocol team will implement multi-sig solution

when there is a stable solution.

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) MISSING MECHANISM FOR
FORCED EXIT ON FROZEN POOL - LOW

Description:

The protocol admin account can freeze pools in case they detect malicious

behavior; however, there is no process to allow users to opt out of their

stake.

Unstake-related functions, such as queue_unstake and execute_unstake

check if the pool is in active state; therefore, legitimate users

cannot leave a frozen pool.

The Access Protocol team confirmed that this pool freeze functionality

will only be used in the event of a pool exploit, thus reducing the

likelihood of a user having their funds locked into a pool without an

exit mechanism.

Code Location:

stake/interface.cairo

• execute_unstake

• queue_unstake

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

It is recommended to add a separate function that allows users to leave

a frozen pool. This should verify that the caller is one of the stakers,

and not the pool owner, in case the pool owner has staked tokens in their

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

own pool, they should not be allowed out.

Remediation Plan:

NOT APPLICABLE: The Access Protocol team states that the only reason to

freeze a pool is when it is created for malicious reasons, and then all

parties involved should freeze their funds as well. In case someone wants

to punish the owner of the pool, then the owner can freeze himself/herself,

allowing the stakers to withdraw their funds.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) INSUFFICIENT PARAMETER
VALIDATION - LOW

Description:

Certain administrative functionality does not impose limits on the values

passed as arguments. For instance, the authority role could change the

token inflation to zero at any time, possibly affecting the token rewards.

If this parameter is changed to zero or a very low value, users with staked

asset will not be able to earn rewards and will eventually end up with

their funds locked for the minimum unlock time.

Code Location:

Risk Level:

Likelihood - 3

Impact - 2

Recommendation:

Halborn recommends that these functions be reviewed to ensure that values

entered by the authority role are within certain limits.

Remediation Plan:

RISK ACCEPTED: The Access Protocol team accepted the risk of this finding.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) MISSING TWO-STEP
TRANSFER OWNERSHIP PATTERN - LOW

Description:

The code does not implement a two-step ownership transfer pattern. This

practice is recommended when admin users have heavy responsibilities,

such as the ability to mint tokens, freeze or unfreeze user accounts and

set system configurations.

It may happen that when transferring ownership of a contract, an error

is made in the address. If the request were submitted, the contract

would be lost forever. With this pattern, contract owners can submit a

transfer request; however, this is not final until accepted by the new

owner. If they realize they have made a mistake, they can stop it at any

time before accepting it by calling cancelRequest.

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

Halborn recommends that the pattern be implemented to ensure that property

transfer errors are not permanent. An implementation of this can be found

in the OpenZeppelin’s cairo-contracts pull requests at GitHub. Note that

this has not yet been accepted, as the repository maintainers are waiting

for the Solidity release to be completed first, so it can follow the same

structure.

Furthermore, this still allows contract owners to renounce ownership if

they wish, via the renounceOwnership function.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/cairo-contracts/pull/275

Remediation Plan:

RISK ACCEPTED: The Access Protocol team will implement it when the two-

step-transfer ownership exists in the stable version of OZ contracts.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) OUTDATED
OPENZEPPELIN’S CONTRACTS VERSION -
INFORMATIONAL

Description:

A software component is part of a system or application that extends the

functionality of the application, such as a module, software package.

Because the Cairo language is still in its early days of development,

any third-party library should be thoroughly tested to ensure that no

unintended bugs are introduced to the platform.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Halborn recommends always using the lastest and most stable version of

third-party dependencies. Furthermore, because the Cairo language is

still in its early days of development, any third-party library should

be thoroughly tested to ensure that no unintended bugs are introduced to

the platform. The current version of the contracts is v0.3.0 available

here.

Remediation Plan:

SOLVED: The Access Protocol team implemented changes in the following PR

78

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OpenZeppelin/cairo-contracts
https://github.com/software-mansion-labs/access-protocol-starknet/pull/78
https://github.com/software-mansion-labs/access-protocol-starknet/pull/78

3.7 (HAL-07) CONTRACTS WITH THE
SAME NAME WILL HAVE OVERWRITTEN
ABIS - INFORMATIONAL

Description:

Multiple contracts share the same filename, and when compiled, the ABIs

will be saved based on the filename. When two contracts have the same

name, the ABI of the last compiled contract will be the one saved to

disk.

This could cause confusion when interacting with the contracts, developing

a backend/frontend for them.

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Although the project is well organized, it is recommended to implement

more sensible file names, for instance:

administration_events.cairo

stake_events.cairo

Remediation Plan:

ACKNOWLEDGED: The Access Protocol Team acknowledged this issue.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.8 (HAL-08) UNCLEAR VARIABLE
NAMING - INFORMATIONAL

Description:

While manually reviewing the code, Halborn identified that a parameter

variable for assert_valid_status had an incorrect name. This could cause

errors later when using that function.

Code Location:

pool/types.cairo Line #164

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Halborn recommends renaming the parameter to status, as it is a more

representative name.

Remediation Plan:

SOLVED: The Access Protocol team implemented changes in the following PR

77

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/software-mansion-labs/access-protocol-starknet/pull/77
https://github.com/software-mansion-labs/access-protocol-starknet/pull/77

3.9 (HAL-09) CODE COMMENTS
INCONSISTENCIES - INFORMATIONAL

Description:

The code lacks proper documentation and certain comments do not reflect

the actual functionality of the contracts. This could lead to increased

maintenance of the code, as well as bugs in case a different developer

modifies the code.

Code Location:

bond/interface.cairo

Recommendation:

Halborn recommends that more complete documentation be produced for the

project, as well as that comments in the code be modified to reflect the

actual functionality of the protocol.

Remediation Plan:

SOLVED: The Access Protocol team solved the issue in the main branch.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.10 (HAL-10) WRONG ARRAY
DECLARATION FOR FUNCTION
PARAMETERS - INFORMATIONAL

Description:

Within the administration/functions.cairo contract, the function

add_bond_sellers takes an array of felt as arguments. As stated in the

Cairo documentation, functions that accept arrays as parameters should

accept them in the following way:

In this example, we are considering the array variable to be named as

array_arg and to be of type felt*:

• array_arg_len: felt

• array_arg: felt*

As shown above, each array parameter must have a corresponding length

parameter, which must precede the array. This could cause issues with

the compiler.

Code Location:

contract/src/adminstration/functions.cairo Line #103

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Halborn recommends that the parameters be reversed so that the sellers_len

parameter precedes the sellers array.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Access Protocol team solved the issue with the removal of the

bond acceptance mechanism.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-11) UNUSED VARIABLE -
INFORMATIONAL

Description:

In the following code section, the variable is assigned, but never used.

Code Location:

contract/src/pool/interface.cairo Line #96

Listing 2

1 let time = pool.data.pool_creation_time

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Consider removing the unused variable.

Remediation Plan:

SOLVED: The Access Protocol team implemented changes in the following PR

77.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/software-mansion-labs/access-protocol-starknet/pull/77
https://github.com/software-mansion-labs/access-protocol-starknet/pull/77

3.12 Appendix I

Bond Sellers Considerations:

The following information is provided as information on the functionality

of the bond seller. After a discussion with the Access Protocol team,

Halborn states that the code can be simplified to better fit its needs,

as well as the surrounding documentation can be improved.

While contract deployers can set up multiple bond sellers, it was con-

firmed that only one seller would be defined during initialization, and

this would be the authority account.

Consequently, the initializer function should be amended to accept only

one bond seller, or set directly to be the authority’s address (provided

in the first parameter).

It is important that untrusted entities be not set up as bond sellers,

as they could cause great damage to the platform.

Furthermore, being just a bond seller, the approval mechanism could be

added to the bond creation function, to remove the need for a second

function call.

On the other hand, if the Access Protocol team decides to have multiple

bond sellers or extend this functionality to meet other needs, they

should ensure that one bond seller cannot self approve their bond, as

well as set themselves as the buyer. This would cause them to be able to

mint new tokens at will. This could be achieved by checking the caller

address to not be the bond creator, as well as implementing a larger

BOND_SIGNER_THRESHOLD.

REMEDIATION

The Access Protocol team implemented some changes after a discussion

about the bond sellers functionality, and decided to assign the role to

the authority account. They will be using this to “airdrop” tokens to

certain users by staking it for them so that they can earn a percentage

of the reward from the pools without the ability to unstake them.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

To support this change, they removed the parameters from the initializer

and set the authority to be a bond seller.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

32

STATIC ANALYSIS

Description:

Halborn used automated testing techniques to enhance coverage of certain

areas of the scoped component. Among the tools used were amarna. After

Halborn verified all the contracts and scoped structures in the repository

and was able to compile them correctly, these tools were leveraged on

scoped structures. With these tools, Halborn can statically verify

security related issues across the entire codebase.

Amarna results:

33

ST
AT

IC
AN

AL
YS

IS

34

ST
AT

IC
AN

AL
YS

IS

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	Appendix I
	Bond Sellers Considerations

	STATIC ANALYSIS
	Description
	Amarna results

