
Access Labs -
Access Protocol

Updates
Solana Program Security Audit

Prepared by: Halborn

Date of Engagement: January 16th, 2023 - January 19th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 5

1 EXECUTIVE OVERVIEW 6

1.1 INTRODUCTION 7

1.2 AUDIT SUMMARY 7

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 8

1.4 SCOPE 10

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) SUSCEPTIBLE TO INTEGER OVERFLOW - INFORMATIONAL 14

Description 14

Code Location 14

Risk Level 16

Recommendation 16

Remediation Plan 16

3.2 (HAL-02) OWNER AND MINT OF SOURCE TOKEN CHECK MISSING DURING

STAKING - INFORMATIONAL 17

Description 17

Code Location 17

Risk Level 18

Recommendation 18

Remediation Plan 18

3.3 (HAL-03) MINT OF DESTINATION ACCOUNT CHECK MISSING - INFOR-

MATIONAL 19

Description 19

1

Code Location 19

Risk Level 21

Recommendation 21

Remediation Plan 21

3.4 (HAL-04) MISLEADING ACCESS ERROR - INFORMATIONAL 22

Description 22

Code Location 22

Risk Level 23

Recommendation 23

Remediation Plan 23

3.5 (HAL-05) MISSING CARGO OVERFLOW CHECKS - INFORMATIONAL 24

Description 24

Code Location 24

Risk Level 24

Recommendation 24

Remediation Plan 24

3.6 (HAL-06) POSSIBLE RUST PANICS DUE TO UNSAFE UNWRAP USAGE -

INFORMATIONAL 25

Description 25

Code Location 25

Risk Level 25

Recommendation 25

Remediation Plan 26

4 MANUAL TESTING 27

4.1 UNSTAKE AN INVALID AMOUNT FROM STAKE POOL 28

Description 28

2

Results 28

4.2 TESTING CHANGES IN THE TIME FIELDS OF ACCOUNTS 29

Results 29

4.3 ACCESS CONTROL IN CLAIM BOND 30

Results 30

5 AUTOMATED TESTING 30

5.1 AUTOMATED VULNERABILITY SCANNING 32

Description 32

Results 32

5.2 AUTOMATED ANALYSIS 34

Description 34

Results 34

5.3 UNSAFE RUST CODE DETECTION 35

Description 35

Results 36

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 01/16/2023 Isabel Burruezo

0.2 Draft Updates 01/19/2023 Isabel Burruezo

0.3 Draft Review 01/19/2023 Piotr Cielas

0.4 Draft Review 01/20/2023 Gabi Urrutia

1.0 Remediation Plan 01/25/2023 Isabel Burruezo

1.1 Remediation Plan Review 01/25/2023 Piotr Cielas

1.2 Remediation Plan Review 01/25/2023 Gabi Urrutia

4

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Isabel Burruezo Halborn Isabel.Burruezo@halborn.com

5

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Isabel.Burruezo@halborn.com

6

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Access Protocol offers a new model monetization layer for all digital

content creators. It is a Web3 protocol built on Solana and Starknet

that offers an alternative to B2C subscriptions.

Access Labs engaged Halborn to conduct a security audit on their program,

beginning on January 16th, 2023 and ending on January 19th, 2023 .

The security audit was scoped to the programs provided in the access-

protocol GitHub repository. Commit hashes and further details can be

found in the Scope section of this report.

1.2 AUDIT SUMMARY

The team at Halborn was provided a week for the engagement and assigned a

full-time security engineer to audit the security of the program in scope.

The security engineer is a blockchain and smart contract security expert

with advanced penetration testing and Solana program hacking skills, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Identify potential security issues within the program

In summary, Halborn identified some improvements to reduce the likelihood

and impact of risks, which were addressed by Access Labs .

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual review of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the Solana program audit. While

7

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Access-Labs-Inc/access-protocol
https://github.com/Access-Labs-Inc/access-protocol

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

programs and can quickly identify items that do not follow security best

practices.

The following phases and associated tools were used throughout the term

of the audit:

• Research into the architecture, purpose, and use of the platform.

• Program manual code review and walkthrough to identify logic issues.

• Mapping out possible attack vectors

• Thorough assessment of safety and usage of critical Rust variables

and functions in scope that could lead to arithmetic vulnerabilities.

• Finding unsafe Rust code usage (cargo-geiger)

• Scanning dependencies for known vulnerabilities (cargo audit).

• Local runtime testing (solana-test-framework)

• Scanning for common Solana vulnerabilities (soteria)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

8

EX
EC

UT
IV

E
OV

ER
VI

EW

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

9

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

1. Access Protocol

• Repository: access-protocol

• Diff in scope:

1. b73a5b231c6672d79e2fe5b7493ca4e675219d9..7b8a9d6129c4c0e43e0e0d6bad97e6074ea24e65

• Programs in scope:

1. access-protocol (access-protocol/smart-contract/program)

Out-of-scope: External libraries, dependencies and financial related at-

tacks.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Access-Labs-Inc/access-protocol
https://github.com/Access-Labs-Inc/access-protocol/compare/b73a5b231c6672d79e2fe5b7493ca4e675219d9..7b8a9d6129c4c0e43e0e0d6bad97e6074ea24e65

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 0 0 6

IM
PA
CT

LIKELIHOOD

(HAL-01)
(HAL-02)
(HAL-03)
(HAL-04)
(HAL-05)
(HAL-06)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) SUSCEPTIBLE TO INTEGER
OVERFLOW

Informational SOLVED - 24/01/2023

(HAL-02) OWNER OF SOURCE TOKEN
CHECK MISSING DURING STAKING

Informational SOLVED - 01/24/2023

(HAL-03) MINT OF DESTINATION
ACCOUNT CHECK MISSING

Informational SOLVED - 01/24/2023

(HAL-04) MISLEADING ACCESS ERROR Informational SOLVED - 01/25/2023

(HAL-05) MISSING CARGO OVERFLOW
CHECKS

Informational SOLVED - 01/24/2023

(HAL-06) POSSIBLE RUST PANICS DUE
TO UNSAFE UNWRAP USAGE

Informational
PARTIALLY SOLVED -

01/25/2023

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) SUSCEPTIBLE TO INTEGER
OVERFLOW - INFORMATIONAL

Description:

Integer overflow/underflow occurs when an arithmetic operation attempts

to create a numeric value that is outside the range that can be represented

by a given number of bits, either greater than the maximum or less than the

minimum representable value. Although integer overflows and underflows

do not cause Rust to panic in the release mode, the consequences could be

dire if the result of those operations is used in financial calculations.

The Stake instruction handler could be affected by an overflow, causing

legitimate transactions to fail and thus cause a denial of service for

the users.

The stake_amount is added to the amount_in_bonds and is compared against

a value (pool_minimum_at_creation). If the sum of both values overflow,

the comparison returns false and the transaction fails.

Code Location:

Listing 1: holding/src/create_bond.rs (Line 32)

25 /// The required parameters for the `create_bond ` instruction

26 pub struct Params {

27 /// Ultimate buyer of the bond

28 pub buyer: Pubkey ,

29 /// Total amount of ACCESS tokens being sold

30 pub total_amount_sold: u64 ,

31 /// Total price of the bond

32 pub total_quote_amount: u64 ,

33 /// Mint of the token used to buy the bond

Listing 2: holding/src/state.rs (Line 547)

24 #[allow(clippy :: too_many_arguments)]

25 pub fn new(

26 owner: Pubkey ,

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

27 total_amount_sold: u64 ,

28 total_quote_amount: u64 ,

29 quote_mint: Pubkey ,

30 seller_token_account: Pubkey ,

31 unlock_start_date: i64 ,

32 unlock_period: i64 ,

33 unlock_amount: u64 ,

34 last_unlock_time: i64 ,

Listing 3: holding/src/stake.rs (Line 27)

24 /// The required parameters for the `stake ` instruction

25 pub struct Params {

26 // Amount to stake

27 pub amount: u64 ,

28 }

Listing 4: holding/src/stake.rs (Line 178)

164 if let Some(bond_account) = accounts.bond_account {

165 let bond_account = BondAccount :: from_account_info(

ë bond_account , false)?;

166

167 check_account_key(

168 accounts.owner ,

169 &bond_account.owner ,

170 AccessError :: WrongOwner ,

171)?;

172 check_account_key(

173 accounts.stake_pool ,

174 &bond_account.stake_pool ,

175 AccessError :: StakePoolMismatch ,

176)?;

177

178 amount_in_bonds = bond_account.total_staked;

179 }

180

181 // if we were previously under the minimum stake limit it gets

ë reset to the pool 's one

182

183 if stake_account.stake_amount + amount_in_bonds <

ë stake_account.pool_minimum_at_creation {

184 stake_account.pool_minimum_at_creation = stake_pool.header

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

ë .minimum_stake_amount;

185 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use safe and verified math libraries such as

checked_add for consistent arithmetic operations throughout the Solana

program system.

Consider using Rust safe arithmetic functions for primitives instead of

standard arithmetic operators. You may also want to either

• Allow users to stake std::u64::MAX as maximum value

• Allow sellers to create bond with std::u64::MAX maximum

total_quote_amount value.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

8e0f7854de2dc4216409719f2aa982315467119a: the addition operator

was replaced with the checked_add function.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/8e0f7854de2dc4216409719f2aa982315467119a

3.2 (HAL-02) OWNER AND MINT OF
SOURCE TOKEN CHECK MISSING DURING
STAKING - INFORMATIONAL

Description:

The Stake instruction allows stakers to stake an amount of tokens. For

this purpose, it is necessary to provide different accounts, among which

is the source_token account.

Stakers deposit their tokens to the stake pool vault.

The instruction handler is checking if the source_token account is really

a token account. However, it does not check if the owner of this account

matches the owner account provided.

Code Location:

Listing 5: src/processor/stake.rs (Line 79)

69 pub fn parse(

70 accounts: &'a [AccountInfo <'b>],

71 program_id: &Pubkey ,

72) -> Result <Self , ProgramError > {

73 let accounts_iter = &mut accounts.iter();

74 let accounts = Accounts {

75 central_state_account: next_account_info(accounts_iter)?,

76 stake_account: next_account_info(accounts_iter)?,

77 stake_pool: next_account_info(accounts_iter)?,

78 owner: next_account_info(accounts_iter)?,

79 source_token: next_account_info(accounts_iter)?,

80 spl_token_program: next_account_info(accounts_iter)?,

81 vault: next_account_info(accounts_iter)?,

82 fee_account: next_account_info(accounts_iter)?,

83 bond_account: next_account_info(accounts_iter).ok(),

84 };

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 6: src/processor/stake.rs

109 check_account_owner(

110 accounts.source_token ,

111 &spl_token ::ID ,

112 AccessError :: WrongTokenAccountOwner ,

113)?;

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Although this does not imply a security risk since when the transfer is

attempted, the transaction will fail if the above case occurs. However,

it is recommended to add a check to verify that the owner account of the

source_token account match the owner account provided.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

d4b1da28abfad5555815c296fd42d6fb347d7571: A check to verify if

the source_token account matches the owner account was added to the

Stake instruction handler.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/d4b1da28abfad5555815c296fd42d6fb347d7571

3.3 (HAL-03) MINT OF DESTINATION
ACCOUNT CHECK MISSING -
INFORMATIONAL

Description:

The ClaimBondRewards instruction allows transferring the generated bond

rewards to the rewards_destination account provided. If this account

does not belong to the bond owner, they must sign the transaction.

The instruction handler does not check however if the mint of the

rewards_destination account matches the mint of central state.

This also happens in other instruction handlers, claim_rewards and

claim_pool_rewards. Additionally, this was observed in the unstake

function and the destination_token account, in the stake function and

the source_token account, and in the unlock_bond_tokensfunction and the

access_token_destination account.

Code Location:

Listing 7: src/processor/claim_bond_rewards.rs (Line 45)

30 pub struct Accounts <'a, T> {

31 /// The stake pool account

32 #[cons(writable)]

33 pub stake_pool: &'a T,

34

35 /// The bond account

36 #[cons(writable)]

37 pub bond_account: &'a T,

38

39 /// The bond account owner

40 #[cons(signer)]

41 pub bond_owner: &'a T,

42

43 /// The rewards destination

44 #[cons(writable)]

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

45 pub rewards_destination: &'a T,

46

47 /// The central state account

48 pub central_state: &'a T,

Listing 8: src/processor/claim_bond_rewards.rs

92 check_account_owner(

93 accounts.rewards_destination ,

94 &spl_token ::ID ,

95 AccessError :: WrongOwner ,

96)?;

Listing 9: src/processor/claim_bond_rewards.rs (Line 167)

144 check_account_key(

145 accounts.mint ,

146 ¢ral_state.token_mint ,

147 AccessError ::WrongMint ,

148)?;

149

150 let reward = calc_reward_fp32(

151 central_state.last_snapshot_offset ,

152 bond.last_claimed_offset ,

153 &stake_pool ,

154 true ,

155 false ,

156)?

157 // Multiply by the staker shares of the total pool

158 .checked_mul(bond.total_staked as u128)

159 .map(|r| ((r >> 31) + 1) >> 1)

160 .and_then(safe_downcast)

161 .ok_or(AccessError :: Overflow)?;

162

163 // Transfer rewards

164 let transfer_ix = mint_to(

165 &spl_token ::ID ,

166 accounts.mint.key ,

167 accounts.rewards_destination.key ,

168 accounts.central_state.key ,

169 &[],

170 reward ,

171)?;

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

172 invoke_signed(

173 &transfer_ix ,

174 &[

175 accounts.spl_token_program.clone (),

176 accounts.mint.clone (),

177 accounts.central_state.clone (),

178 accounts.rewards_destination.clone (),

179],

180 &[&[& program_id.to_bytes (), &[central_state.signer_nonce

ë]]],

181)?;

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

Although this does not introduce a security risk, since when attempting

to perform the minting, the transaction fails if the above case occurs.

However, it is recommended to add a check in the instruction handler to

verity the mint of rewards_destination token account matches the mint of

central state account.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

94221402c98e393eaab23bbe1e2084d44dc3964d: Checks were added to

the affected instruction handlers to verify the mint of the destination

account matches the mint of the central state account.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/94221402c98e393eaab23bbe1e2084d44dc3964d

3.4 (HAL-04) MISLEADING ACCESS
ERROR - INFORMATIONAL

Description:

The Stake and Unstake instructions allow the transaction sender to op-

tionally include a bond account. This account is used to adjust the

value of pool_minimum_at_creation of the stake account, as well as to

calculate if the unstake amount is valid. If it is not, an AccessError

WrongTokenAccountOwner is thrown. However, this error is not represen-

tative, since the bond account is not a token account.

Code Location:

Listing 10: src/processor/stake.rs (Line 125)

121 if let Some(bond_account) = accounts.bond_account {

122 check_account_owner(

123 bond_account ,

124 program_id ,

125 AccessError :: WrongTokenAccountOwner ,

126)?

127 }

Listing 11: src/processor/unstake.rs (Line 111)

107 if let Some(bond_account) = accounts.bond_account {

108 check_account_owner(

109 bond_account ,

110 program_id ,

111 AccessError :: WrongTokenAccountOwner ,

112)?

113 }

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to create a new AccessError that properly represents

an incorrect bond account owner.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commits

94221402c98e393eaab23bbe1e2084d44dc3964d

and a056460212b2261ad6c110e2c1801da2b86dfc2d: A new AccessError,

called WrongBondAccountOwner, was introduced and added to the checks

where the bond account provided is verified in the Stake and Unstake

instructions handlers.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/94221402c98e393eaab23bbe1e2084d44dc3964d
https://github.com/Access-Labs-Inc/access-protocol/commits/a056460212b2261ad6c110e2c1801da2b86dfc2d

3.5 (HAL-05) MISSING CARGO OVERFLOW
CHECKS - INFORMATIONAL

Description:

It was observed that there is no overflow-checks=true in Cargo.toml. By

default, overflow checks are disabled in optimized release builds. Hence,

if there is an overflow in release builds, it will be silenced, leading to

unexpected behavior of an application. Even if checked arithmetic is used

through checked_*, it is recommended to have that check in Cargo.toml.

Code Location:

• program/Cargo.toml

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to add overflow-checks=true under your release profile

in Cargo.toml.

Remediation Plan:

SOLVED: The Access Labs team fixed this issue in commit

50aa3ea87a550115694d019c4ebbe63bb16c0a7a: the overflow-checks=true

property was added to the package manifest.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/50aa3ea87a550115694d019c4ebbe63bb16c0a7a

3.6 (HAL-06) POSSIBLE RUST PANICS
DUE TO UNSAFE UNWRAP USAGE -
INFORMATIONAL

Description:

The use of helper methods in Rust, such as unwrap, is allowed in dev and

testing environment because those methods are supposed to throw an error

(also known as panic!) when called on Option::None or a Result which is

not Ok. However, keeping unwrap functions in production environment is

considered bad practice because they may lead to program crashes, which

are usually accompanied by insufficient or misleading error messages.

Code Location:

Listing 12

1 ./ program/state.rs :151: try_cast_slice_mut(rem).

ë unwrap (),

2 ./ program/state.rs :450: let current_time = Clock ::get().

ë unwrap ().unix_timestamp as u64;

3 ./ program/state.rs :579: let current_time = Clock ::get().

ë unwrap ().unix_timestamp;

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended not to use the unwrap function in the production

environment because its use causes panic! and may crash the contract

without verbose error messages. Crashing the system will result in a

loss of availability and, in some cases, even private information stored

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

in the state. Some alternatives are possible, such as propagating the

error with ? instead of unwrapping, or using the error-chain crate for

errors.

Remediation Plan:

PARTIALLY SOLVED: The Access Labs team fixed this issue in commit

694e13afe6367c346414eada6af9df46df897538: The get_current_offset and

activate functions in state.rs have been modified to replace unwraps

with propagating errors with ?; all references to those functions have

also been updated accordingly. Access Labs explained that modifying

the get_checked function involves more complex code changes and because

this finding does not pose a direct security risk, this function was not

updated.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Access-Labs-Inc/access-protocol/commit/694e13afe6367c346414eada6af9df46df897538

27

MANUAL TESTING

In the manual testing phase, the following scenarios were simulated.

The scenarios listed below were selected based on the severity of the

vulnerabilities Halborn was testing the program for.

4.1 UNSTAKE AN INVALID AMOUNT FROM
STAKE POOL

Description:

The Unstake instruction allows stakers to unstake the amount they staked,

provided they claimed their rewards. The possibility to provide the

corresponding account bond has been added.

The stake account has a pool_minimum_at_creation field that represents

the minimum stake amount of the stake pool at the time of its creation.

This field is updated when the Unstake instruction is executed for con-

sistency with the minimum amount to stake to get access to the pool in

the stake pool. However, if the amount to unstake is not the total amount

staked in it, it could result in a number of tokens staked in that account

below the minimum allowed.

Results:

No code vulnerabilities were identified.

28

MA
NU

AL
TE

ST
IN

G

4.2 TESTING CHANGES IN THE TIME
FIELDS OF ACCOUNTS

Some changes have been added to the account fields to keep track of the

time elapsed between actions like claim, stake, etc.

A function has also been added, get_current_offset(), to make it easier

to calculate the number of days given the values of these fields. These

were tested to confirm no new vulnerabilities were introduced.

Results:

No code vulnerabilities were identified.

29

MA
NU

AL
TE

ST
IN

G

4.3 ACCESS CONTROL IN CLAIM BOND

In ClaimBond the possibility has been introduced for the instruction to

be permissionless if the bond account was created with a non-zero quote

amount.

This was tested to confirm no vulnerabilities were introduced with this

change.

Results:

No code vulnerabilities were identified.

30

MA
NU

AL
TE

ST
IN

G

31

AUTOMATED TESTING

5.1 AUTOMATED VULNERABILITY
SCANNING

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues, and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was Soteria, a security

analysis service for Solana programs. Soteria performed a scan on all

the programs and sent the compiled results to the analyzers to locate any

vulnerabilities.

Results:

Soteria found two unsafe arithmetic operations, which one of them may

result in overflow. It was reported with HAL-01 vulnerability in pre-

vious chapter. The rest of issues identified were verified to be false

positives.

32

AU
TO

MA
TE

D
TE

ST
IN

G

33

AU
TO

MA
TE

D
TE

ST
IN

G

5.2 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of well-

known security issues and vulnerabilities. Among the tools used was cargo

-audit, a security scanner for vulnerabilities reported to the RustSec

Advisory Database. All vulnerabilities published in https://crates.io

are stored in a repository named The RustSec Advisory Database. cargo

audit is a human-readable version of the advisory database which performs

a scanning on Cargo.lock. Security Detections are only in scope. All

vulnerabilities shown here were already disclosed in the above report.

However, to better assist the developers maintaining this code, the

auditors are including the output with the dependencies tree, and this

is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

RUSTSEC-2020-0159 chrono Potential segfault in ‘localtime_r‘ invoca-

tions.

RUSTSEC-2020-0071 time Potential segfault in the time crate.

RUSTSEC-2023-00011 tokio reject_remote_clients Configuration corrup-

tion.

34

AU
TO

MA
TE

D
TE

ST
IN

G

https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2023-0001

5.3 UNSAFE RUST CODE DETECTION

Description:

Halborn used automated security scanners to assist with the detection of

well-known security issues and vulnerabilities. Among the tools used was

cargo-geiger, a security tool that lists statistics related to the usage

of unsafe Rust code in a core Rust codebase and all its dependencies.

35

AU
TO

MA
TE

D
TE

ST
IN

G

Results:

36

AU
TO

MA
TE

D
TE

ST
IN

G

37

AU
TO

MA
TE

D
TE

ST
IN

G

38

AU
TO

MA
TE

D
TE

ST
IN

G

39

AU
TO

MA
TE

D
TE

ST
IN

G

40

AU
TO

MA
TE

D
TE

ST
IN

G

41

AU
TO

MA
TE

D
TE

ST
IN

G

42

AU
TO

MA
TE

D
TE

ST
IN

G

43

AU
TO

MA
TE

D
TE

ST
IN

G

44

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	UNSTAKE AN INVALID AMOUNT FROM STAKE POOL
	Description
	Results

	TESTING CHANGES IN THE TIME FIELDS OF ACCOUNTS
	Results

	ACCESS CONTROL IN CLAIM BOND
	Results

	AUTOMATED TESTING
	AUTOMATED VULNERABILITY SCANNING
	Description
	Results

	AUTOMATED ANALYSIS
	Description
	Results

	UNSAFE RUST CODE DETECTION
	Description
	Results

